Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 35(10): 3809-3827, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37486356

RESUMO

Engineering the plant immune system offers genetic solutions to mitigate crop diseases caused by diverse agriculturally significant pathogens and pests. Modification of intracellular plant immune receptors of the nucleotide-binding leucine-rich repeat (NLR) receptor superfamily for expanded recognition of pathogen virulence proteins (effectors) is a promising approach for engineering disease resistance. However, engineering can cause NLR autoactivation, resulting in constitutive defense responses that are deleterious to the plant. This may be due to plant NLRs associating in highly complex signaling networks that coevolve together, and changes through breeding or genetic modification can generate incompatible combinations, resulting in autoimmune phenotypes. The sensor and helper NLRs of the rice (Oryza sativa) NLR pair Pik have coevolved, and mismatching between noncoevolved alleles triggers constitutive activation and cell death. This limits the extent to which protein modifications can be used to engineer pathogen recognition and enhance disease resistance mediated by these NLRs. Here, we dissected incompatibility determinants in the Pik pair in Nicotiana benthamiana and found that heavy metal-associated (HMA) domains integrated in Pik-1 not only evolved to bind pathogen effectors but also likely coevolved with other NLR domains to maintain immune homeostasis. This explains why changes in integrated domains can lead to autoactivation. We then used this knowledge to facilitate engineering of new effector recognition specificities, overcoming initial autoimmune penalties. We show that by mismatching alleles of the rice sensor and helper NLRs Pik-1 and Pik-2, we can enable the integration of synthetic domains with novel and enhanced recognition specificities. Taken together, our results reveal a strategy for engineering NLRs, which has the potential to allow an expanded set of integrations and therefore new disease resistance specificities in plants.


Assuntos
Resistência à Doença , Proteínas de Plantas , Resistência à Doença/genética , Proteínas de Plantas/metabolismo , Alelos , Plantas/genética , Imunidade Vegetal/genética , Doenças das Plantas/genética
2.
Curr Opin Plant Biol ; 74: 102380, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37187111

RESUMO

Factors including climate change and increased global exchange are set to escalate the prevalence of plant diseases, posing an unprecedented threat to global food security and making it more challenging to meet the demands of an ever-growing population. As such, new methods of pathogen control are essential to help with the growing danger of crop losses to plant diseases. The intracellular immune system of plants utilizes nucleotide-binding leucine-rich repeat (NLR) receptors to recognize and activate defense responses to pathogen virulence proteins (effectors) delivered to the host. Engineering the recognition properties of plant NLRs toward pathogen effectors is a genetic solution to plant diseases with high specificity, and it is more sustainable than several current methods for pathogen control that frequently rely on agrochemicals. Here, we highlight the pioneering approaches toward enhancing effector recognition in plant NLRs and discuss the barriers and solutions in engineering the plant intracellular immune system.


Assuntos
Proteínas NLR , Plantas , Proteínas NLR/genética , Plantas/metabolismo , Imunidade Vegetal/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
PLoS One ; 15(9): e0238616, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32931489

RESUMO

Plant NLR immune receptors are multidomain proteins that can function as specialized sensor/helper pairs. Paired NLR immune receptors are generally thought to function via negative regulation, where one NLR represses the activity of the second and detection of pathogen effectors relieves this repression to initiate immunity. However, whether this mechanism is common to all NLR pairs is not known. Here, we show that the rice NLR pair Pikp-1/Pikp-2, which confers resistance to strains of the blast pathogen Magnaporthe oryzae (syn. Pyricularia oryzae) expressing the AVR-PikD effector, functions via receptor cooperation, with effector-triggered activation requiring both NLRs to trigger the immune response. To investigate the mechanism of Pikp-1/Pikp-2 activation, we expressed truncated variants of these proteins, and made mutations in previously identified NLR sequence motifs. We found that any domain truncation, in either Pikp-1 or Pikp-2, prevented cell death in the presence of AVR-PikD, revealing that all domains are required for activity. Further, expression of individual Pikp-1 or Pikp-2 domains did not result in cell death. Mutations in the conserved P-loop and MHD sequence motifs in both Pikp-1 and Pikp-2 prevented cell death activation, demonstrating that these motifs are required for the function of the two partner NLRs. Finally, we showed that Pikp-1 and Pikp-2 associate to form homo- and hetero-complexes in planta in the absence of AVR-PikD; on co-expression the effector binds to Pikp-1 generating a tri-partite complex. Taken together, we provide evidence that Pikp-1 and Pikp-2 form a fine-tuned system that is activated by AVR-PikD via receptor cooperation rather than negative regulation.


Assuntos
Proteínas NLR/metabolismo , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Morte Celular , Proteínas NLR/química , Proteínas de Plantas/química , Ligação Proteica , Domínios Proteicos
4.
J Biol Chem ; 295(44): 14916-14935, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32816993

RESUMO

Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.


Assuntos
Plantas/imunologia , Receptores Imunológicos/metabolismo , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Plantas/metabolismo , Transdução de Sinais
5.
Plant Cell Physiol ; 59(12): 2398-2408, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30192967

RESUMO

Plant nucleotide-binding leucine-rich repeat receptors (NLRs) are intracellular pathogen receptors whose N-terminal domains are integral to signal transduction after perception of a pathogen-derived effector protein. The two major plant NLR classes are defined by the presence of either a Toll/interleukin-1 receptor (TIR) or a coiled-coil (CC) domain at their N-terminus (TNLs and CNLs). Our knowledge of how CC domains function in plant CNLs lags behind that of how TIR domains function in plant TNLs. CNLs are the most abundant class of NLRs in monocotyledonous plants, and further research is required to understand the molecular mechanisms of how these domains contribute to disease resistance in cereal crops. Previous studies of CC domains have revealed functional diversity, making categorization difficult, which in turn makes experimental design for assaying function challenging. In this review, we summarize the current understanding of CC domain function in plant CNLs, highlighting the differences in modes of action and structure. To aid experimental design in exploring CC domain function, we present a 'best-practice' guide to designing constructs through use of sequence and secondary structure comparisons and discuss the relevant assays for investigating CC domain function. Finally, we discuss whether using homology modeling is useful to describe putative CC domain function in CNLs through parallels with the functions of previously characterized helical adaptor proteins.


Assuntos
Proteínas NLR/química , Proteínas NLR/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...